کاربرد مدل ترکیبی موجک-شبکه عصبی در پیش بینی تغییرات کوتاه مدت تراز سطح دریا (مطالعه موردی: بندر چابهار)
Authors
abstract
پیش بینی دقیق تر از سطح دریا در مناطق ساحلی در کاربردهای مهندسی سواحل بسیار با اهمیت می باشد. با پیش بینی تراز سطح دریا مشاهده جریانات دریا و تغییرات آن ها در سطح، ارتفاع موج، سرعت باد و جزر و مد ممکن شده و این نقش بسزائی در برنامه ریزی و مدیریت سواحل دارد. این مطالعه، توانایی روش و مدل ترکیبی موجک-شبکه عصبی در پیش بینی کوتاه مدت تراز سطح دریا در بندر چابهار را مورد مطالعه و بررسی قرار می دهد. مقایسه این روش با دو روش مدل شبکه عصبی و رگرسیون خطی با استفاده از پارامترهای آماری ضرایب خطا (e، rmse) به عنوان معیار، مورد بررسی قرار می گیرد. اطلاعات گذشته در مورد تراز سطح دریا که بصورت ساعتی برداشت شده به عنوان ورودی مدل بوده و مدل برای پیش بینی 12 ساعت آینده (نیم روز) مورد استفاده قرار گرفته است. مقایسه مدل ترکیبی موجک-شبکه عصبی با دیگر مدل ها با استفاده از معیار خطاها، نتایج بهتر این مدل را در پیش بینی تراز سطح دریا در دوره کوتاه مدت 12 ساعته در این ایستگاه نشان می دهد. ضریب e در سه حالت مدل ترکیبی موجک-شبکه عصبی، شبکه عصبی و رگرسیون خطی بترتیب 989/0، 878/0 و 848/0 می باشد. این مدل با استفاده از تبدیل موجک و تجزیه سری زمانی تراز سطح دریا به زیرسری هایی با اطلاعات مفید و با تغییرات فرکانسی مختلف، فرآیند پیش بینی را بهبود می بخشد.
similar resources
کاربرد مدل ترکیبی موجک-شبکه عصبی در پیشبینی تغییرات کوتاه مدت تراز سطح دریا (مطالعه موردی: بندر چابهار)
پیشبینی دقیقتر از سطح دریا در مناطق ساحلی در کاربردهای مهندسی سواحل بسیار با اهمیت میباشد. با پیشبینی تراز سطح دریا مشاهده جریانات دریا و تغییرات آنها در سطح، ارتفاع موج، سرعت باد و جزر و مد ممکن شده و این نقش بسزائی در برنامهریزی و مدیریت سواحل دارد. این مطالعه، توانایی روش و مدل ترکیبی موجک-شبکه عصبی در پیشبینی کوتاه مدت تراز سطح دریا در بندر چابهار را مورد مطالعه و بررسی قرار میدهد...
full textکاربرد مدل شبکه عصبی- موجک برای پیش بینی ویژگی های غیرایستا و غیرخطی سری زمانی تراز آب زیرزمینی
سفره های آب زیرزمینی غالباً به عنوان سیستم هایی با ویژگی های غیرایستا و غیرخطی شناخته می شوند. مدل سازی این سیستم ها و پیش بینی حالت های آینده آن ها نیازمند تشخیص این ویژگی های بنیادی است. اخیراً، آنالیز موجک به دلیل توانایی آن در رمزگشایی ویژگی های اشاره شده، به طور گسترده ای در زمینه پیش بینی سری های زمانی هیدرولوژیکی مورد استفاده قرار گرفته است. در این مقاله توانایی مدل ترکیبی ...
full textکاربرد شبکه بیزین و مدل ماشین بردار پشتیبان در پیش بینی تغییرات سطح تراز ایستابی (مطالعه موردی: دشت اردبیل)
آبهای زیرزمینی به عنوان یکی از منابع مهم و عمده تأمین آب شرب و کشاورزی، به ویژه در مناطق خشک و نیمه خشک مطرح بوده است. شبیه سازی سیستم آبهای زیرزمینی به دلیل پیچیدگی این سیستمها به آسانی میسر نیست. در این مقاله با استفاده از دادههای سطح تراز ایستابی دشت اردبیل در بازه زمانی(1390-1351)، به ارزیابی عملکرد آزمون گاما برای پردازش و انتخاب ورودیهای مناسب و کارایی مدلهای حداقل مربعات ماشین برد...
full textپیش بینی تراز آب زیرزمینی دشت قم به وسیله مدل ترکیبی شبکه عصبی- موجک
مدلهای پیشبینی صحیح و قابل اطمینان تراز آب زیرزمینی برای مدیریت منابع آب اهمیت دارند. در سالهای اخیر استفاده از تحلیل موجک برای تجزیه سریهای زمانی و ترکیب آن با شبکههای عصبی به صورت گستردهای در مدلسازی پدیدههای هیدرولوژیکی به کار رفتهاست. در پژوهش حاضر کاربرد مدلهای شبکه عصبی، ترکیبی شبکه عصبی- موجک و رگرسیون خطی چندمتغیره در پیشبینی تراز آب زیرزمینی هفت حلقه پیزومتر واقع در دشت قم ب...
15 صفحه اولپیش بینی دامنه تغییرات طلا با استفاده از مدل ترکیبی ARIMA و شبکه عصبی
مدل خودرگرسیو میانگین متحرک انباشته (ARIMA) که تحت عنوان روش باکس و جنکینزشناخته میشود، یکی از پرکاربردترین مدلها در پیشبینی سریهای زمانی است. اما پیش فرض اصلی این مدل خطی بودن سریهای زمانی میباشد. از سوی دیگر شبکهی عصبی یک تخمین زنندهی عمومی است که الگوهای غیر خطی را بسیار خوب مدلسازی مینماید. دانستن الگوی دادهها مبنی بر خطی و غیر خطی بودن در واقعیت کمی دشوار است، بنابراین این اید...
full textMy Resources
Save resource for easier access later
Journal title:
دو فصلنامه علمی - پژوهشی دریا فنونPublisher: دانشگاه علوم دریایی امام خمینی (ره) نوشهر
ISSN 2423-6853
volume 1
issue 2 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023